0

Z-Transform Basics with Formulas

  • The Z-Transform is the discrete time counter part of Laplace transform. Z-transform allows us to perform transform analysis of unstable systems and to develop additional insights and tools for LTI (linear Time Invariant)system analysis. The Z-transform transforms difference equation into algebraic equations and hence the discrete time system analysis is specified. Z Transform Basics with Z transform formulas are explained below,

    The Z-Transform of a discrete time signal x(n) is defined as:


    Where ‘z’ is a complex variable and z=r*e^ (j*ω)

    Where ‘r’ is the radius of the circle.

    If the sequence x(n) exists for ‘n’ in the range( -∞ to ∞), then,

    represents a bilateral or two sided Z transform.



    If the sequence x(n) exists only for n>=0,then

    which is called one sided or unilateral Z-Transform.





    0 Responses to “Z-Transform Basics with Formulas”

    Post a Comment

    Subscribe